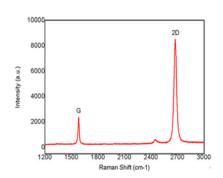
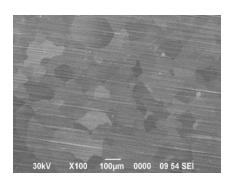
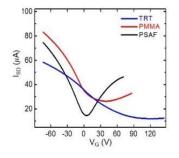
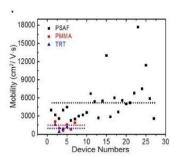

Graphene on PET



Product Size	Up to 500x600mm²
Film Morphology	Continuous Monolayer (>95%)
Sheet Resistance	Av. < 250~400 Ω/sq
Mobility	>3500cm2/Vs
Transmittance	>97%
Substrate	PET (188μm) (Standard)
Domain Size	10-20 μm

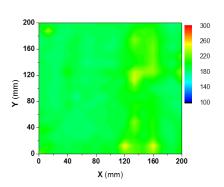

High-Resolution TEM Images


Raman Spectrum



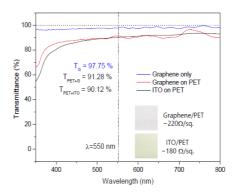
SEM Image of Graphene on Cu

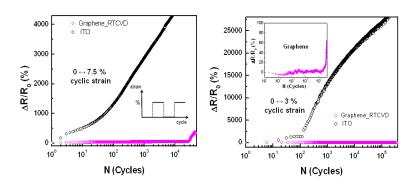
Electrical Properties



Ultra-Clean Transfer by Pressure Sensitive Adhesive Films

Graphene on Cu Transfer by PMMA TRT PSAF A SEM C OM C OM G OM G OM 100 µm 100 µm 100 µm 100 µm 1 µm


Sheet Resistance Uniformity


Application of Graphene on PET for Flexible Touch Screen

Optical Transmittance

Mechanical Properties of Graphene on PET

Reference

- (1) S. Kim et. al. Ultra-Clean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films. Nano Lett. (accepted).
- (2) S. Bae*, H. Kim* et al. Roll-to-roll production of 30 inch graphene films for transparent electrodes *Nature Nanotech.* **5,** 574 (2010).
- (3) J.-H. Ahn & B. H. Hong Graphene for displays that bend. Nature Nanotech. 9, 737-738 (2014).