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From far-IR Drude absorption measurement we determine carrier density �N� and carrier scatter-
ing rate ��� of graphene deposited on buffer-layer /SiO2 composite substrate. Two types of
buffer-layers, �1� polar dielectric oxide ZnO and SrTiO3 �2� organic thin film hexamethyl-
disilazane and polymethyl methacrylate �PMMA� were studied. N varies widely over 0.12–11.8
��1012 cm−2� range depending on the buffer-layer. In contrast � remains almost constant,
�100 cm−1, irrespective of the buffer-layers. This indicates that carrier mobility ��� of graphene
depends on substrate through N, but not by � as commonly believed. © 2011 American Institute of
Physics. �doi:10.1063/1.3590773�

High mobility of massless Dirac fermion plays critical
role in high-speed electronic device application of graphene.
In free-standing graphene electron mobility as high as �
=250 000 cm2 /V s is reported at room temperature.1 How-
ever when graphene is transferred on SiO2 substrate, � is
suppressed to 3000–15 000 cm2 /V s.2 The �-reduction is
considered to be related with carrier scattering with surface
polar phonon and charged impurity of the substrate. One
approach to overcome this problem is to insert second mate-
rial between the graphene and SiO2 in hope to reduce the
influence of SiO2. Indeed quasi-free-standing behavior is re-
stored partly in graphene/Au/Ni-substrate3 made by Au-
monolayer intercalation method, and also in graphene /
HMDS /SiO2 �Ref. 4� with organic hexamethyldisilazane
�HMDS� thin layer. The designed graphene /buffer-layer /
SiO2 composite is therefore a promising structure for
the �-enhancement. However the role of the b-layer
�=buffer-layer� on the graphene carrier is not well under-
stood yet.

When graphene is transferred on substrate carrier densi-
ty�N� changes due to substrate-induced charge doping. Also
the scattering rate ��� is believed to increase through surface
polar phonon and/or charged impurity scattering. N and �
are, as we will discuss later, directly related with the carrier
mobility of graphene. Therefore it is important to character-
ize them for various types of substrate materials. N and � are
measured commonly by Hall effect and dc-resistivity experi-
ment. Recently we and other groups reported5,6 that they can
be determined from far-infrared �FIR� spectroscopy of free
carrier Drude response. This method allows simultaneous
measurement of N and � without need of the electrical-lead
contact to the sample.

In this letter, we performed FIR transmission measure-
ment of large scale chemical vapor deposition �CVD�-grown
graphene placed on b-layer /SiO2 composite substrate for
various b-layers in following two groups: �1� polar dielectric

oxide �SrTiO3 and ZnO� and �2� organic polymer film
HMDS���CH3�3Si�2NH� and polymethyl methacrylate
�PMMA; �C5O2H8�n�. We also measured the sample with no
b-layer, graphene /SiO2. We determine N and � of charge
carrier monitoring how they change on different types of the
b-layers. Such information enables us to understand the role
of the b-layer on the carrier mobility in graphene and even-
tually which direction we should pursue to enhance it. To
study large scale graphene �LSG� is important because they
are in greater need than the microscopic exfoliated sample
in high-speed circuit,7,8 flexible display,9 and transparent
conductor10 applications.

LSG is synthesized by CVD method as described
elsewhere.11 b-layer was deposited on SiO2 �300 nm thick�/
Si-substrate using thermal evaporation method as in Ref. 12
�for SrTiO3 and ZnO� and spin-coating method �HMDS and
PMMA� respectively. Thickness of the b-layer was measured
using AFM and ellipsometry method. LSG was transferred
onto the composite substrate b-layer /SiO2 /Si after removing
Cu-foil using 0.1M ammonium persulphate �NH4�2S2O8 so-
lution. For FIR measurement we covered half of the sub-
strate surface with LSG leaving the other half for the trans-
mission reference �see inset of Figs. 1 and 2�. Transmission
spectrum through LSG/sub �=Ts� was normalized by that
through the bare substrate �=Tr� and relative transmission
TR���=Ts /Tr was obtained. FTIR �Bomem DA8� and bolo-
metric detector were used for FIR measurement.

Figure 1 shows 1−TR��� in the FIR region measured on
LSG /SiO2�300 nm� /Si. The curve rises at low frequency
�=decrease in transmission� due to Drude absorption. The
transmission of the SiO2 /Si substrate is flat with frequency
�inset�, a typical behavior of an insulator. We fit TR���
using three-layer model with dielectric function ����
algorithm;13 ����� ,d�= �11.6,0.5 mm� for Si and �2.5, 300
nm� for SiO2. d is the layer thickness. ���� was determined
from transmission data in the inset. For LSG we use
�−�4� / i������ ,3.4 Å� where ���� is the Drude optical
conductivity
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Here Drude strength �P
2 and carrier scattering rate � are the

fitting parameters. Interference among the multiply reflected
lights is accounted for coherently for LSG and SiO2 layers.
The fit agrees well with the data. The 2d-carrier density N is
related with �P as �P

2 ·d= �VFe2 /
���N. Using the Fermi
velocity VF=1.1�106 m /s, we obtain N=4.5�1012 cm−2

which is comparable to transport measurements.14–16 We re-
peated the TR��� measurement for six LSG samples and the
data were reproduced with identical �P

2 and � values.
Figure 2 displays 1-TR��� of LSG on ZnO and SrTrO3

layers. The Drude peak for ZnO-buffer is stronger than
that for the SiO2 layer of Fig. 1, while it is similar for STO.
From four-layer model fit, we obtain N=9.8�1012 cm−2

and N=5.6�1012 cm−2 for ZnO and STO respectively. �
=95–100 cm−1 is the same as that of Fig. 1. The inset shows
absolute transmission of the b-layer /SiO2 /Si substrate with-
out graphene. The transmission level at low frequency allows
us to determine ���� of the b-layer’s from the three-layer
analysis �dashed lines�.

Figure 3 depicts 1−TR��� of LSG on organic films
PMMA and HMDS. In PMMA Drude strength is substan-
tially enhanced resulting in the increase in N to 11.8
�1012 cm−2. For HMDS, N is suppressed largely to N
=0.1�1012 cm−2, which is 1/40 of that for SiO2. In contrast
to the N-change � is almost the same as for the other
b-layers. Again the transmission of the bare HMDS
�PMMA� /SiO2 /Si, inset of Fig. 2, shows the insulating
behavior of the buffer-layers. The fitting parameters for
the graphene layer and for the b-layers are summarized in
Table I.

� is in 95–120 cm−1 range for the 5 different substrates
studied in our work. The little dependence of � on the
b-layer is an unexpected result: In polar oxide substrate re-
mote surface polar phonon �SPP� is considered as important
scattering source for graphene at room-T.17,18 On the other
hand HMDS is a nonpolar material where SPP is absent or, if
any, weak. � shows no difference for the two material
groups. Charged impurity in the substrate is another scatter-
ing source for the carrier in graphene. In high-� substrate, the
Coulomb potential is screened more effectively by the di-
electric polarization of the lattice. However while � of the
b-layer varies from 2.5 �for SiO2� to 11 �for STO� in our
measurement, � remains constant showing no correlation

FIG. 1. �Color online� 1-TR��� of graphene /SiO2�300 nm� /Si�0.5 mm�
in FIR region. TR��� represents the transmission of the graphene sample
relative to that of substrate. The dashed curve shows the fit result using
Drude model. The dip at �=480 cm−1 is an artifact due to low instrumental
FIR intensity. The inset shows absolute transmission of the
SiO2�300 nm� /Si�0.5 mm� and Si �0.5mm� without graphene. We deter-
mine ���� of Si and SiO2 from their transmission levels. See the dashed
lines. The dip at 460 cm−1 �610 cm−1� is due to optical phonon of SiO2 �Si�.

FIG. 2. �Color online� 1-TR��� of graphene transferred on b-layer /SiO2 /Si
with polar oxide buffer b-layer=STO and ZnO. The dashed curves show the
fit from the multilayer optical transmission analysis. Inset shows the abso-
lute transmission of the insulating composite substrates. � of the buffer-layer
is determined from the transmission level at low frequency region.

FIG. 3. �Color online� 1-TR��� of graphene on b-layer /SiO2 /Si with organic
polymer buffer PMMA and HMDS. Inset shows the carrier density �n� and
scattering rate ��� as function of � for the different buffer-layers.

TABLE I. Drude model fit result for different buffer-layers: plasma fre-
quency �p, scattering rate �, carrier density N, and mobility �. d and � are
the thickness and dielectric constant, respectively.

Type
d

�nm� �
�p

��103 cm−1�
�

�cm−1�
N

��1012 cm−2�
�

�cm2 /V s�

SiO2 300 2.5 17.4 95.0 4.5 2467
ZnO 30 12.8 21.1 100.0 9.8 1594
SrTiO3 30 13.8 18.3 95.0 5.6 2216
HMDS 2 8.7 7.1 120.0 0.1 11680
PMMA 30 1.7 22.1 95.0 11.8 1527
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with � �Inset of Fig. 3�.19 The robustness of � may indicate
that � is dominated by intrinsic scattering due to such as
phonon of the graphene itself, the nanoripples, and the grain
boundary.

In graphene carrier mobility � is given as �
= �e /��h� · �vF /�N� 1

� in contrast with the familiar semiclas-
sical relation �= �e /m�� · �1 /��.17 Using N and � of Table I
we calculate � for each b-layer �Table I�. For LSG on SiO2
we have ��2500 cm2 /V s which is close to other reports.20

Notably � increases to 11 700 cm2 /V s for HMDS. This
effect was seen also in the transport measurement by Lafkioit
et al.4 The significant �-enhancement is due to the excep-
tionally small N of HMDS but not by reduced scattering rate.
In fact � of HMDS is larger than other b-layers. To find a
b-layer material with small N is one guideline toward better
�. However when LSG is applied as a field effect device N
can increase by the gate voltage and in such situation �-drop
cannot be avoided. Ultimately �-increase through the re-
duced � is highly needed. Next step of our work is to find a
way to improve � such as, for example, thermal annealing.

In conclusion we have performed FIR spectroscopy
measurement to investigate the effect of buffer-layer
on graphene in the LSG /buffer-layer /SiO2�300 nm� /Si
samples. The Drude response of graphene showed that
�1� carrier density N changes depending on the five
b-layers, polar oxide thin layer ZnO and SrTiO3, organic
film PMMA and HMDS, and the bare SiO2. �2� However
surprisingly the carrier scattering rate � has little dependence
on the buffer-layers. That the carrier mobility � varies on
different substrates—including the fourfold enhancement
to 11 700 �cm2 /V s� for HMDS-layer—results through the
N-change, but not from the � change as many people be-
lieve. Our finding indicates that in addition to the N-control
further room is left open for �-enhancement through � im-
provement.

This work was supported by Basic Science Research
Program through the NRF funded by the Ministry of Educa-
tion, Science and Technology of Korea �Grant No. 2010-
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1M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K.
Maude, A.-L. Barra, M. Sprinkle, C. Berger, and W. A. de Heer, Phys.
Rev. Lett. 101, 267601 �2008�.

2S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A.
Ponomarenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett. 97, 016801
�2006�.

3A. Varykhalov, J. S. Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A.
Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601
�2008�.

4M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V.
Klitaing, and J. H. Smet, Nano Lett. 10, 1149 �2010�.

5C. Lee, J. Y. Kim, S. k. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, Appl.
Phys. Lett. 98, 071905 �2011�.

6J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel,
M. Michael, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Phys. Rev.
B 83, 165113 �2011�.

7T. Mueller, F. Xia, and P. Avouris, Nat. Photonics 4, 297 �2010�.
8F. Xia, T. Mueller, Y. M. Lin, A. V. Garcia, and P. Avouris, Nat. Nano-
technol. 4, 839 �2009�.

9G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 �2008�.
10J. K. Wassei and R. B. Kaner, Mater. Today 13, 52 �2010�.
11X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni,

I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science
324, 1312 �2009�.

12J. H. Rho, S. H. Jang, Y. D. Ko, S. J. Kang, D. W. Kim, J. S. Chung, M.
Y. Kim, M. S. Han, and E. J. Choi, Appl. Phys. Lett. 95, 241906 �2009�.

13A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel,
Phys. Rev. Lett. 100, 117401 �2008�.

14K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 �2004�.

15Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das
Sarma, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99, 246803 �2007�.

16J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat.
Nanotechnol. 3, 206 �2008�.

17V. Perebeinos and P. Avouris, Phys. Rev. B 81, 195442 �2010�.
18A. Konar, T. Fang, and D. Jena, Phys. Rev. B 82, 115452 �2010�.
19A similar result was reported from transport experiment; L. A. Ponomar-

enko, R. yang, T. M. Mohiuddin, M. I. Katsnelson, K. S. Novoselov, S. V.
Morozov, A. A. Zhkov, F. Schedin, E. W. Hill, and A. K. Geim, Phys.
Rev. Lett. 102, 206603 �2009�.

20At low-T �1.5 K� �=3800 cm2 /V s was reported for LSG from Hall
effect measurement: K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K.
S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature �London�
457, 706 �2009�.

201907-3 Kim et al. Appl. Phys. Lett. 98, 201907 �2011�

Downloaded 03 Nov 2011 to 210.125.184.85. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.101.267601
http://dx.doi.org/10.1103/PhysRevLett.101.267601
http://dx.doi.org/10.1103/PhysRevLett.97.016801
http://dx.doi.org/10.1103/PhysRevLett.101.157601
http://dx.doi.org/10.1021/nl903162a
http://dx.doi.org/10.1063/1.3555425
http://dx.doi.org/10.1063/1.3555425
http://dx.doi.org/10.1103/PhysRevB.83.165113
http://dx.doi.org/10.1103/PhysRevB.83.165113
http://dx.doi.org/10.1038/nphoton.2010.40
http://dx.doi.org/10.1038/nnano.2009.292
http://dx.doi.org/10.1038/nnano.2009.292
http://dx.doi.org/10.1038/nnano.2008.83
http://dx.doi.org/10.1016/S1369-7021(10)70034-1
http://dx.doi.org/10.1126/science.1171245
http://dx.doi.org/10.1063/1.3275707
http://dx.doi.org/10.1103/PhysRevLett.100.117401
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1038/nnano.2008.58
http://dx.doi.org/10.1038/nnano.2008.58
http://dx.doi.org/10.1103/PhysRevB.81.195442
http://dx.doi.org/10.1103/PhysRevB.82.115452
http://dx.doi.org/10.1103/PhysRevLett.102.206603
http://dx.doi.org/10.1103/PhysRevLett.102.206603
http://dx.doi.org/10.1038/nature07719

